Hierarchies, multiple energy barriers, and robustness govern the fracture mechanics of -helical and -sheet protein domains

نویسندگان

  • Theodor Ackbarow
  • Xuefeng Chen
  • Sinan Keten
  • Markus J. Buehler
چکیده

The fundamental fracture mechanisms of biological protein materials remain largely unknown, in part, because of a lack of understanding of how individual protein building blocks respond to mechanical load. For instance, it remains controversial whether the free energy landscape of the unfolding behavior of proteins consists of multiple, discrete transition states or the location of the transition state changes continuously with the pulling velocity. This lack in understanding has thus far prevented us from developing predictive strength models of protein materials. Here, we report direct atomistic simulation that over four orders of magnitude in time scales of the unfolding behavior of -helical (AH) and -sheet (BS) domains, the key building blocks of hair, hoof, and wool as well as spider silk, amyloids, and titin. We find that two discrete transition states corresponding to two fracture mechanisms exist. Whereas the unfolding mechanism at fast pulling rates is sequential rupture of individual hydrogen bonds (HBs), unfolding at slow pulling rates proceeds by simultaneous rupture of several HBs. We derive the hierarchical Bell model, a theory that explicitly considers the hierarchical architecture of proteins, providing a rigorous structure–property relationship. We exemplify our model in a study of AHs, and show that 3–4 parallel HBs per turn are favorable in light of the protein’s mechanical and thermodynamical stability, in agreement with experimental findings that AHs feature 3.6 HBs per turn. Our results provide evidence that the molecular structure of AHs maximizes its robustness at minimal use of building materials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Crack Tip Constraint for Anisotropic Sheet Metal Plate Subjected to Mode-I Fracture

On the ground of manufacturing, sheet metal parts play a key role as they cover about half of the production processes. Sheet metals are commonly obtained from rolling and forming processes which causes misalignment of micro structure resulting obvious anisotropic characteristics and micro cracks. Presence of micro cracks poses serious attention, when stresses at the tip reach to the critical v...

متن کامل

The Effects of Forming Parameters on the Single Point Incremental Forming of 1050 Aluminum Alloy Sheet

The single point incremental forming (SPIF) is one of the dieless forming processes which is widely used in the sheet metal forming. The correct selection of the SPIF parameters influences the formability and quality of the product. In the present study, the Gurson-Tvergaard Needleman (GTN) damage model was used for the fracture prediction in the numerical simulation of the SPIF process of alum...

متن کامل

A novel modification of decouple scaled boundary finite element method in fracture mechanics problems

In fracture mechanics and failure analysis, cracked media energy and consequently stress intensity factors (SIFs) play a crucial and significant role. Based on linear elastic fracture mechanics (LEFM), the SIFs and energy of cracked media may be estimated. This study presents the novel modification of decoupled scaled boundary finite element method (DSBFEM) to model cracked media. In this metho...

متن کامل

Part A- Experimental: Experimental Analysis of Crack Propagation in Pre-stressed Concrete Sleepers by Fracture Mechanics

This study investigates propagation of mode I crack in B70 pre-stressed concrete sleepers by fracture mechanics approach. A new experimental analysis is done for notched B70 pre-stressed concrete sleepers with Replica test and image analysis. A scanning electron microscope test (SEM) and an image analysis are applied for the Replica test in order to determine crack length and crack mouth openin...

متن کامل

Atomistically Informed Mesoscale Model of Alpha-Helical Protein Domains

Multiscale mechanical properties of biological protein materials have been the focal point of extensive investigations over the past decades. In this article, we present the development of a mesoscale model of alpha-helical (AH) protein domains, key constituents in a variety of biological materials, including cells, hair, hooves, and wool. Our model, derived solely from results of full atomisti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007